LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - PHYSICS

FOURTH SEMESTER - NOVEMBER 2013

PH 4806 - SOLID STATE PHYSICS - II

Date: 04/11/2013	Dept. No.	Max.: 100 Marks
Time: 1:00 - 4:00		

PART - A

Answer **ALL** questions:

 $(10 \times 2 = 20)$

- 1. Mention any four characteristic properties of a semiconductor.
- 2. What is the effect of doping on the Fermi level?
- 3. What is pyro-electric property?
- 4. Define polarisation and polarisability.
- 5. What is photoluminescence?
- 6. What are colour centres and name the various types of colour centres?
- 7. Establish the relation between magnetic susceptibility and permeability for a linear medium.
- 8. Mention any three contributions to the magnetic energy of a material.
- 9. What is a cooper pair? Is it a boson or fermion?
- 10. What is isotope effect in superconductors?

PART - B

Answer any **FOUR** questions:

 $(4 \times 7.5 = 30)$

- 11. Derive an expression for hole concentration in an intrinsic semiconductor.
- 12. Derive Clausius-Mossotti equation for a dielectric.
- 13. What is photoconductivity? Based on a simple model without impurities, arrive at an expression for rate of generation of charge carriers per unit volume.
- 14. Describe the classical theory of diamagnetism.
- 15. Derive an expression for London's penetration depth.

PART - C

Answer any **FOUR** questions:

 $(4 \times 12.5 = 50)$

- 16. (a) Explain with suitable diagrams the rectifying metal-semiconducting contact. (8)
 - (b) The Hall coefficient of certain silicon specimen was found to be $7.35 \times 10^5 \text{m}^3 \text{C}^{-1}$ from 100 to 400K. Determine the nature of the semiconductor. Further the electrical conductivity was found to be $200\Omega^{-1}\text{m}^{-1}$. Calculate the density and mobility of charge carriers. (4.5)

17.	Derive an expression for temperature dependence of dielectric constant (Curie-Wiess law) for a						
	ferroelectric crystal.						
18.	Explain in detail the principle, construction and working of a three level laser?						
19.	(a) Derive expression for the temperature dependence of susceptibility for ferromagnetic materials.						
	(8)						
	(b) Write a note on ferr	rites.		(4.5)			
20.	Explain with necessary theory,						
	(i) flux quantisation,	(ii) AC and	(iii) DC Josephson effect.	(6+4+2.5)			
